

Laws

Video Clip

Law of Conservation of Mass

 In this law – mass is neither created nor destroyed – it is _____

Example

• Lets say that you have 10.00 g of mercury (II) oxide. It is placed into a flask and heated until it is converted into liquid mercury and oxygen gas. If I get 9.26 g of liquid mercury, how much oxygen gas was created?

Try this one...

• A reaction between sodium hydroxide and hydrogen chloride gas produces sodium chloride and water. A reaction of 22.85 g of sodium hydroxide with 20.82 g of hydrogen chloride gives off 10.29 g of water. What mass of sodium chloride is formed in the reaction?

Here's one that's a little different...

 Copper sulfide is formed when copper & sulfur are heated together. In this reaction 127 g of copper react with 41 g of sulfur. After the reaction is complete, 9 g of sulfur remains un reacted. How much copper sulfide was formed?

Law of _____ Proportions

- The elements that composed the compounds were always in a certain _____ by _____.
- This principle is now referred to as the
- Another way to say this is...water is always water is always water...

Law of Definite Proportions

- The mass of the _____ is equal to the sum of the masses of the _____ that make up the compound.
- The ratio of the mass of each element to the total mass of the compound is a percentage called the ______.

Example

• A compound is analyzed in the lab an found to contain 8.44 g C, 1.3 g H, and 10.26 g O. What is the % composition of each element in the compound?

Another Example

- Now let's say that Mr. Romano finds a mystery white powder in the cafeteria. He asks us to analyze the substance and tell him what it is.
- We find that there is 211.0 g of C, 32.5 g H, and 256.5 g O. What is the % composition of the compound?

Law of _____ Proportions

 The law of multiple proportions states that when different ______ are formed by a combination of the same _______, different masses of one element combine with the same relative mass of the other element in a

_____ of small _____

Dalton's Atomic Theory

- 1. All matter is made up of atoms.
- 2. Atoms are indestructible and cannot be divided into smaller particles. (Atoms are indivisible.)
- 3. All atoms of one element are exactly alike, but are different from atoms of other elements.

