Scientific Method & Density

Mass vs. Weight

- _____ anything that has mass & takes up space
 - _____ measurement that tell how much matter you have (kg)
- _____ measurement of the amount of matter you have <u>with the effect</u> of gravity

For Example...

- Let's say a guy weighs 150 pounds
- This is about 54 kg in mass
- What would his mass be on the moon if the moon's gravity is about 1/6 that of the Earth?

Hmmmm...

- Would it be 1/6 of 150 pounds?
- Would it be 1/6 of 54 kg?
- · Would it be 150 pounds
- Or would it be 54 kg?

The answer is ...

Some of you are scratching your heads...

- The reason is because gravity has <u>NOTHING</u> to do with mass – that's only for weight
- His mass did not change only his weight changed

Accuracy vs. Precision

- _____ How close you are to the correct answer
- _____ How close your answers are together

For Example...

• Let's say we had the following dart board

Is the accuracy good or bad?

Is the precision good or bad?

Try this one

· Let's say we had the following dart board

Is the precision good or bad?

Try this one

• Let's say we had the following dart board

Is the accuracy good or bad?

Is the precision good or bad?

The Scientific Method

- _____ a systematic approach used in scientific study
- It is an organized approach for scientists to do ______
- Provides a method for scientists to verify their work and the work of others

Steps for the Scientific Method

Step # 1 – _____

•	- the act of gathering
information ()
	data - information with
NO numbers	
 (hot, blue, rainy, 	, cold)
	data – information with
numbers	
• (98°F, 80% hum	nidity, 0°C)

Steps for the Scientific Method

Step # 2 – Form a _____

- _____ tentative explanation for what has been observed
- There is no formal evidence at this point

– It is just a _____

Steps for the Scientific Method

Step # 3 –

- a set of controlled observations that test the hypothesis variable - the thing that you change in the experiment variable – the thing that changes because you changes the

independent variable _____ – something that does not change during the experiment

_ - the standard for

comparison

For example...

· Let's say we are going to do an experiment testing what happens when you heat and cool a balloon...

Now we will change something...

What will happen to the balloon's size?

Now let's cool things down

- What variable did YOU change?
 -_____ (______Variable)
 What variable changes BECAUSE you changed the temperature?
 - –_____Variable)
- What balloon did you use to compare the others to?

Steps for the Scientific Method

Step # 4 – _____

_____ – judgment based on the information obtained

Density

• Density - mass per unit volume (g/cm³)

Density

 An object has a volume of 825 cm³ and a density of 13.6 g/cm³. Find its mass.

GIVEN:	WORK:
V = 825 cm ³	M = DV
D = 13.6 g/cm ³	
M = ?	

Density

A liquid has a density of 0.87 g/mL. What volume is occupied by 25 g of the liquid?

GIVEN:	WORK:
D = 0.87 g/mL	V = M
V = ?	D
M = 25 g	

Density

You have a sample with a mass of 620 g & a volume of 753 cm³. Find density.

GIVEN:	WORK:
M = 620 g	D = M
V = 753 cm ³	V
D = ?	

Density

- The good thing about density is that it is an _____ property
- That means that the density of a substance is the ______ regardless of the _______
- If you find the ______ of an unknown material, you can look it up in a density chart to find its identity

Density

- I have a block that measures 5.25 cm by 2.25 cm by 8.50 cm.
- I weigh the block and find its mass to be 5.85 g
- Calculate the density of the block in g/cm³

What of you have an odd shaped object?

- The density of an odd shaped object can be found by the same equation
- D = M / V
- To find the mass, you just weigh the odd shaped object
- To find the volume, you place water in a graduated cylinder and get an initial volume
- Then you place the object into the graduated cylinder.
- The volume of the object is the difference in the two volumes

For example

• A chunk of metal has a mass of 5.25 g. It is placed in a graduated cylinder containing 25.0 ml of water. Once the metal is placed in the graduated cylinder, the water rises to 38.2 ml. What is the density of the metal?