

Solutions: Basic Definitions

- ______ substance that is being dissolved
- _____- substance that dissolves the solute
- _____ a mixture of substances that has a uniform composition; a homogeneous mixture

Solutions: Basic Definitions

- _____ when a substance will dissolve in another substance (salt & water)
- _____ when a substance will not dissolve in another substance (sand & water)

Solutions: Basic Definitions

- _____ when two liquids are soluble in each other (alcohol & water)
- _____ when two liquids are not soluble in each other (oil & water)
- _____ dissolved in water

Solutions: Basic Definitions

- _____ If the amount of solute dissolved is less than the maximum that could be dissolved
- _____- solution which holds the maximum amount of solute per amount of the solution under the given conditions
- ______- solutions that contain more solute than the usual maximum amount and are unstable.

Solutions: Basic Definitions

- ______ mixture containing particles that will settle out is left undisturbed (cornstarch & water)
- _____ heterogeneous mixture that will not settle out if left alone (blood)
- ______ colloid in which a liquid is suspended in another liquid (mayo)

Solutions: Basic Definitions

- _____ solution that conducts an electric current
- _____ solution that does not conduct an electric current

Supersaturated Solutions

- They cannot permanently hold the excess solute in solution and may release it suddenly.
- Supersaturated solutions are made by dissolving a solute in the solution at an elevated temperature and then slowly cooling the solution.

According to the graph above, about how many grams of KBr are needed to make a saturated solution in 100 g of water at 30° C?

According to the graph above, what kind of solution would you have if you dissolved 10 g of KCl in 100 g of water at 0°C?

Solubility

- _____ process of surrounding solute particles with solvent particles to form a solution
- · The rule for dissolving solutions is
- Polar substances will dissolve in polar solvents
- Non polar substances will dissolve in non polar solvents
- Non polar will NOT dissolve in polar and vice versa

Increasing the Rate of Solution

- 1. Agitation
- 2. Increasing Temperature
- 3. Increasing Surface Area

- · Increases the speed of the particles
 - speeds up the dissolving process in solids.

Increasing Temperature

• More collisions of particles as temperature increases.

Particle Size (Increasing Surface Area)

- Smaller particles dissolve faster than larger particles.
 - more surface area
 - Sugar cube vs. ½ teaspoon sugar
 - Teaspoon will dissolve faster

Solubility of a gas

- Two main factors that affect the solubility of a gas in a liquid
- 1. Temperature
 - Normally, the higher the temperature, the faster a solute will dissolve...NOT with a gas!
 - In a gas, the cooler the temperature, the faster the gas will dissolve

Solubility of a gas

- The second factor affecting the solubility of a gas is pressure
- 2. Pressure
 - The higher the pressure, the more gas that will dissolve
 - Think of a coke bottle...What will happen if you leave the lid off?

Henry's Law

- The solubility of a gas is directly proportional to the pressure
- The higher the pressure, the more gas will dissolve

•
$$\underline{S}_1 = \underline{S}_2$$

- P_1^{-} P_2^{-}
- S = solubility (g/L)
- P = pressure

Example

 If 0.85 g of a gas at 4.0 atm of pressure dissolves in 1.0 L of water at 25°C, how much will dissolve in 1.0 L of water at 1.0 atm of pressure at the same temperature?

Another Example

• The solubility of a gas is 2.0 g/L at 50.0 kPa. How much gas will dissolve in 1.5 L at 10.0 kPa?

• Concentration expresses a ratio that compares an amount of the solute with an amount of the solution or the solvent.

% by Mass

- Remember ...
- % = <u>part</u> x 100 whole
- % by mass = <u>mass solute</u> x 100 mass solution

Example

 What is the % by mass of a solution with 3.6 g of NaCl dissolved in 100.0 g of water?

% by Volume

- Remember ...
- % = <u>part</u> x 100 whole
- % by volume = <u>volume solute</u> x 100 volume solution

• What is the % by volume of 75.0 ml of ethanol dissolved in 200.0 ml of water?

Molarity

- _____ is defined as the number of moles of solute per liter of solution.
- Molarity = moles of solute/liter of solution
- M = mol/L

Molarity Examples

• Calculate the molarity of a solution made by dissolving 23.4 g of sodium sulfate in 125 ml of solution

Molarity Examples

 Calculate the molarity of a solution made by dissolving 5.00 g of C₆H₁₂O₆ in enough water to make 100.0 ml of solution

Molarity Examples

 How many grams of Na₂SO₄ are required to make 0.350 L of a 0.500 M solution of Na₂SO₄?

Dilution

- When chemists purchase solutions, they generally purchase "______ solutions" which are extremely concentrated solutions
- This way a chemist can dilute the strong solution to any concentration that they wish. This stops the chemist from having to buy several concentrations

Dilution Equation

- $M_1V_1 = M_2V_2$
- M₁ = initial molarity
- V₁ = initial volume
- M₂ = final molarity
- V₂ = final volume
- The units for $V_1 \And V_2$ do not matter as long as they are the same
- M₁ & M₂ MUST be in molarity

Dilution Problems

 Suppose we want to make 250 ml of a 0.10 M solution of CuSO4 and we have a stock solution of 1.0 M CuSO4. How many mL of 1.0 M CuSO₄ would you need?

More Dilution Problems

• How many ml of 3.0 M H₂SO₄ are required to make 450 ml of a 1.0 M solution?