Conversions

And Density Problems

Accuracy vs. Precision

- How close you are to the correct answer
- How close your answers are together

For Example..

• Let's say we had the following dart board

Is the accuracy good or bad?

Is the precision good or bad?

Try this one

· Let's say we had the following dart board

Is the accuracy good or bad?

Is the precision good or bad?

┰	. 41.	. : _		_
TTN	τr	บร	on	е

 Let's say we had the following dart board

Is the accuracy good or bad?

Is the precision good or bad?

Dimensional Analysis

- _____ is just a big word for going from one unit to another.
- Have you ever converted inches into feet or years into days?
- If so, then you have done dimensional analysis

Dimensional Analysis

- <u>Dimensional Analysis</u> method of problem-solving that focuses on
- _____ a ratio of equal values used to go from one unit to another
 - Example: 1 foot = 12 inches
 - Can be written as 1 foot 12 inches

Rules for Dimensional Analysis

- 1. ALWAYS start with the given!!!
- 2. Draw a multiplication sign and a line
- 3. Place the unit to be canceled on the bottom
- Place a conversion factor on the line you have drawn
- 5. Cross out units and see what you have left.
- 6. You must have one on top & one on the bottom

Let's try an example...

Let's convert 32.5 inches to feet.

Try this example..

 How many seconds are in 82.95 minutes?

What if you need to Change 2 Units?

Convert 65 miles per hour to kilometers per second (0.625 miles = 1 Km)

Conversions with Prefixes

- Conversions with prefixes are done in exactly the same manner
- You just have to know the prefixes

Prefixes

Prefix	Symbol	<u>Value</u>
Giga	G	1 x 10 ⁹
Mega	М	1 x 10 ⁶
Kilo	к	1 x 10 ³
Deci	d	1 x 10 ^{- 1}
Centi	С	1 x 10 - 2
Milli	m	1 x 10 ^{- 3}
Micro	μ	1 x 10 ^{- 6}
Nano	n	1 x 10 ^{- 9}
Pico	P	1 x 10 - 12
Femto	f	1 x 10 - 15

Rules with Prefixes

- The rules are the same...
- Start with the given
- Place the cross out unit on the bottom
- Place conversion unit on top
- Keep crossing out until you get what you want

A few differences

- Always remember that _____ will go with your Prefix
- The number with in _____ will go with your base unit
- You can only go from a _____ to a ____ to a

Let's try one

• Convert 100 nm into m

Try this one...

• Convert 785 mm to km

Temperature Conversions

- The three units for measuring temperature, are...
 - Celsius
 - Fahrenheit
 - Kelvin

To Convert Among Temperatures Use These Formulas

- °F = 1.8 °C + 32
- $^{\circ}$ C = 0.56 ($^{\circ}$ F 32)
- K = °C + 273

Try these examples

• Convert 35 °C to Kelvin

Example

Example

• Convert 55 °C to °F

• Convert 95.8 °F to °C

Example

Convert 75.0 °F to Kelvin

Density

• Density - mass per unit volume (g/cm³)

$$D = \frac{M}{V}$$

	Density
An object has a volume of 825 cm ³ and a density of 13.6 g/cm ³ . Find its mass.	
GIVEN:	WORK:

GIVEN:	WORK:
$V = 825 \text{ cm}^3$	
$D = 13.6 \text{ g/cm}^3$	
M = ?	
$ /D V \rangle$	

Donoity	
Density	

A liquid has a density of 0.87 g/mL. What volume is occupied by 25 g of the liquid?

volume is occup	ied by 25 g of the fiquid:
GIVEN:	WORK:
D = 0.87 g/mL	
V = ?	_
M = 25 g M D ©	

Density	

You have a sample with a mass of 620 g & a volume of 753 cm³. Find density.

volume of 753 cm ³ . Find density.	
GIVEN:	WORK:
M = 620 g	
$V = 753 \text{ cm}^3$	_
D = ?	
/ M \	
(C) V	

Density

- Density is that it is an _____ property
- That means that the density of a substance is the same regardless of _____
- If you find the density of an unknown material, you can look it up in a density chart to find its identity

Density

- I have a block that measures 5.25 cm by 2.25 cm by 8.50 cm.
- I weigh the block and find its mass to be 5.85 a
- Calculate the density of the block in g/cm³

What of you have an odd shaped object?

- The density of an odd shaped object can be found by the same equation
- To find the mass, you just _____ the odd shaped object
- To find the volume, you place water in a ____ and get an initial volume
- Then you place the object into the ______
- The volume of the object is the _____ in the two volumes

For example

 A chunk of metal has a mass of 5.25 g. It is placed in a graduated cylinder containing 25.0 ml of water. Once the metal is placed in the graduated cylinder, the water rises to 38.2 ml. What is the density of the metal?