Introduction to Equilibrium # Equilibrium - Chemical equilibrium occurs when the [reactants] & [products] stop - Equilibrium reactions are always denoted by _____ ## Equilibrium Expressions - aA + bB ≠ cC + dD - K_c = - K_c = equilibrium constant - [] = concentration in molarity - K_c is always the same at a specific temperature - Solids & liquids do not have a [] & will therefore be left out of the k_c expressions # **Equilibrium Expressions** - Write the equilibrium expressions for the following reactions... - $2O_{3 (g)} \rightleftarrows 3O_{2 (g)}$ #### **Equilibrium Expressions** - Write the equilibrium expressions for the following reactions... - $H_{2 (g)} + I_{2 (g)} \rightleftarrows 2HI_{(g)}$ #### **Equilibrium Expressions** - Write the equilibrium expressions for the following reactions... - FeO $_{(s)}$ + H_{2 $_{(g)}$} \rightleftharpoons Fe $_{(s)}$ + H₂O $_{(g)}$ #### Heterogeneous / Homogeneous - The reaction is _____ if all of the states are the same - _____ if any of the states are different #### Look at the last 3 reactions - Tell if they are heterogeneous or homogeneous - $2O_{3 (g)} \neq 3O_{2 (g)}$ - $H_{2 (g)} + I_{2 (g)} \rightleftarrows 2HI_{(g)}$ - FeO _(s) + H_{2 (g)} \rightleftarrows Fe _(s) + H₂O _(g) #### Equilibrium Constant in Terms of Pressure - When the reactants & products are gases the k_{eq} will be in partial pressures not molarity - K_p when using pressure - $aA + bB \neq cC + dD$ - K_p = #### Switching between k_c & k_p - $K_p = k_c(RT)^{\Delta n}$ - R = 0.0821 - T = temperature in Kelvin - \(\Delta n = \text{change in moles} \) (# moles products # moles reactants) # Switching between k_c & k_p - $N_{2 (g)} + 3H_{2 (g)} \rightleftarrows 2NH_{3 (g)}$ - Calculate k_p at 300°C if k_c = 9.60 # Magnitude of K_{eq} - Will either be big or small - Value of K_c will determine if the products or reactants are favored - Kc = $[COCl_2]$ = 4.57 x 10⁹ $[CO][Cl_2]$ Kc is greater that 1 Therefore the [products] is greater than the [reactants] So products are favored ## Magnitude of K_{eq} - K_c > _____ are favored - K_c < _____ are favored # Magnitude of K_{eq} • $N_{2 (g)} + O_{2 (g)} \neq 2NO_{(g)}$ - Kc = $[NO]^2$ = 1 x 10 -30 $[N_2][O_2]$ - What is favored...products or reactants??? ## Direction of Equilibrium & k Equilibrium reactions occur in both directions - $N_{2 (g)} + 3H_{2 (g)} \rightleftarrows 2NH_{3 (g)}$ - Kc = - $2NH_{3 (g)} \rightleftarrows N_{2 (g)} + 3H_{2 (g)}$ - Kc = ## Direction of Equilibrium & k - The equilibrium constant in one direction is the _____ of the one in the reverse reaction - $N_2O_4 \neq 2NO_2$ Kc = 0.212 - What is the Kc of ... - $2NO_2 \neq N_2O_4$ # Calculating Equilibrium Constants A mixture of N₂ gas and H₂ gas produce NH₃ gas and are allowed to come to equilibrium at 472°C. The equilibrium mixture was analyzed and found to contain 0.1207 M H₂, 0.0402 M N₂, & 0.00272 M NH₃. Calculate K_c. # Calculating Equilibrium Constants - 2NO₂CI ≥ 2NO₂ + CI₂ - · At equilibrium the - [NO₂CI] = 0.00106 M - $[NO_2] = 0.0108 M$ - [Cl₂] = 0.00538 M - Calculate kc # Calculating Equilibrium Constants - $N_{2 (g)} + 3H_{2 (g)} \rightleftarrows 2NH_{3 (g)}$ - Kp = 1.45×10^{-5} - At equilibrium P_{H2} = 0.928 atm & P_{N2} = 0.432 atm. What is the P_{NH3} ? # Calculating Equilibrium Constants - $PCl_{5 (g)} \rightleftarrows PCl_{3 (g)} + Cl_{2 (g)}$ Kp = 0.497 - At equilibrium P $_{PCI5}$ = 0.860 atm, P $_{PCI3}$ = 0.350 atm. - Calculate P CI2