Introduction to Equilibrium

Equilibrium

- Chemical equilibrium occurs when the [reactants] & [products] stop
- Equilibrium reactions are always denoted by _____

Equilibrium Expressions

- aA + bB ≠ cC + dD
- K_c =
 - K_c = equilibrium constant
 - [] = concentration in molarity
 - K_c is always the same at a specific temperature
 - Solids & liquids do not have a [] & will therefore be left out of the k_c expressions

Equilibrium Expressions

- Write the equilibrium expressions for the following reactions...
- $2O_{3 (g)} \rightleftarrows 3O_{2 (g)}$

Equilibrium Expressions

- Write the equilibrium expressions for the following reactions...
- $H_{2 (g)} + I_{2 (g)} \rightleftarrows 2HI_{(g)}$

Equilibrium Expressions

- Write the equilibrium expressions for the following reactions...
- FeO $_{(s)}$ + H_{2 $_{(g)}$} \rightleftharpoons Fe $_{(s)}$ + H₂O $_{(g)}$

Heterogeneous / Homogeneous

- The reaction is _____ if all of the states are the same
- _____ if any of the states are different

Look at the last 3 reactions

- Tell if they are heterogeneous or homogeneous
- $2O_{3 (g)} \neq 3O_{2 (g)}$
- $H_{2 (g)} + I_{2 (g)} \rightleftarrows 2HI_{(g)}$
- FeO _(s) + H_{2 (g)} \rightleftarrows Fe _(s) + H₂O _(g)

Equilibrium Constant in Terms of Pressure

- When the reactants & products are gases the k_{eq} will be in partial pressures not molarity
- K_p when using pressure
- $aA + bB \neq cC + dD$
- K_p =

Switching between k_c & k_p

- $K_p = k_c(RT)^{\Delta n}$
- R = 0.0821
- T = temperature in Kelvin
- \(\Delta n = \text{change in moles} \)
 (# moles products # moles reactants)

Switching between k_c & k_p

- $N_{2 (g)} + 3H_{2 (g)} \rightleftarrows 2NH_{3 (g)}$
- Calculate k_p at 300°C if k_c = 9.60

Magnitude of K_{eq}

- Will either be big or small
- Value of K_c will determine if the products or reactants are favored
- Kc = $[COCl_2]$ = 4.57 x 10⁹ $[CO][Cl_2]$

Kc is greater that 1

Therefore the [products] is greater than the [reactants]

So products are favored

Magnitude of K_{eq}

- K_c > _____ are favored
- K_c < _____ are favored

Magnitude of K_{eq} • $N_{2 (g)} + O_{2 (g)} \neq 2NO_{(g)}$

- Kc = $[NO]^2$ = 1 x 10 -30 $[N_2][O_2]$
- What is favored...products or reactants???

Direction of Equilibrium & k

Equilibrium reactions occur in both directions

- $N_{2 (g)} + 3H_{2 (g)} \rightleftarrows 2NH_{3 (g)}$
- Kc =
- $2NH_{3 (g)} \rightleftarrows N_{2 (g)} + 3H_{2 (g)}$
- Kc =

Direction of Equilibrium & k

- The equilibrium constant in one direction is the _____ of the one in the reverse reaction
- $N_2O_4 \neq 2NO_2$ Kc = 0.212
- What is the Kc of ...
- $2NO_2 \neq N_2O_4$

Calculating Equilibrium Constants

 A mixture of N₂ gas and H₂ gas produce NH₃ gas and are allowed to come to equilibrium at 472°C. The equilibrium mixture was analyzed and found to contain 0.1207 M H₂, 0.0402 M N₂, & 0.00272 M NH₃. Calculate K_c.

Calculating Equilibrium Constants

- 2NO₂CI ≥ 2NO₂ + CI₂
- · At equilibrium the
- [NO₂CI] = 0.00106 M
- $[NO_2] = 0.0108 M$
- [Cl₂] = 0.00538 M
- Calculate kc

Calculating Equilibrium Constants

- $N_{2 (g)} + 3H_{2 (g)} \rightleftarrows 2NH_{3 (g)}$
- Kp = 1.45×10^{-5}
- At equilibrium P_{H2} = 0.928 atm & P_{N2} = 0.432 atm. What is the P_{NH3} ?

Calculating Equilibrium Constants

- $PCl_{5 (g)} \rightleftarrows PCl_{3 (g)} + Cl_{2 (g)}$ Kp = 0.497
- At equilibrium P $_{PCI5}$ = 0.860 atm, P $_{PCI3}$ = 0.350 atm.
- Calculate P CI2