

Solutions: Basic Definitions

- _____ substance that is being dissolved
- _____ substance that dissolves the solute
- _____ a mixture of substances that has a uniform composition; a _____ mixture

Solutions: Basic Definitions

- _____ when a substance will dissolve in another substance
- (salt & water)
- _____ when a substance will not dissolve in another substance
 - (sand & water)

Solutions: Basic Definitions

- ______ when two liquids are soluble in each other
- (alcohol & water)
- ______ when two liquids are not soluble in each other
- (oil & water)

_____ dissolved in water

Solutions: Basic Definitions

_____- - amount of solute dissolved is less than the maximum that could be dissolved

- _____- solution which holds the maximum amount of solute
- ______- solutions that contain more solute than the usual maximum amount and are unstable.

Supersaturated Solutions

- They cannot permanently hold the excess solute in solution and may release it suddenly.
- Supersaturated solutions, as you might imagine, have to be prepared carefully.
- Generally, this is done by dissolving a solute in the solution at an elevated temperature, at which solubility is higher than at room temperature, and then slowly cooling the solution.

Increasing the Rate of Solution

- 1.
- 2. Increasing _____
- 3. Increasing _____

- · Increases the speed of the particles
 - speeds up the dissolving process in solids.

Increasing Temperature

- More collisions of particles as temperature increases.
- Sugar-water solutions you can dissolve more sugar in a given amount of water if you increase the temperature.

Particle Size (Increasing Surface Area)

- Smaller particles dissolve faster than larger particles.
 - more surface area
 - Sugar cube vs. ½ teaspoon sugar
 - Teaspoon will dissolve faster

Solubility of a gas

- Two main factors that affect the solubility of a gas in a liquid
- 1.
 - Normally, the higher the temperature, the faster a solute will dissolve...NOT with a gas!
 - In a gas, the cooler the temperature, the faster the gas will dissolve

Solubility of a gas

• The second factor affecting the solubility of a gas is pressure

2. _

- The higher the pressure, the more gas that will dissolve
- Think of a coke bottle...What will happen if you leave the lid off?

Henry's Law

- The solubility of a gas is _____ proportional to the pressure
- The higher the pressure, the more gas will dissolve
- $\underline{S}_{\underline{1}} = \underline{S}_{\underline{2}}$
- $P_1 P_2$
- S = solubility (g/L)
- P = pressure

Example

 If 0.85 g of a gas at 4.0 atm of pressure dissolves in 1.0 L of water at 25°C, how much will dissolve in 1.0 L of water at 1.0 atm of pressure at the same temperature?

Another Example

 The solubility of a gas is 2.0 g/L at 50.0 kPa. How much gas will dissolve in 1.5 L at 10.0 kPa?

- _____ a compound with a specific number of water molecules bound to it
- In a hydrate the formula of the compound is written first with a dot and the number of water molecules attached to it

Hydrates

- Examples:
 - CaCl₂ · 2H₂O

 - CuSO₄ ·5H₂O

•____

Na₂CO₃ · 10 H₂O

Hydrates

- When calculating the molecular weight of hydrates, you must also calculate the waters
- $CaCl_2 \cdot 2H_2O$
- $CuSO_4 \cdot 5H_2O$

Concentrated Versus Dilute

- Chemists never apply the terms *strong* and *weak* to solution concentrations.
- These terms are used in chemistry to describe the chemical behavior of acids and bases.
- Instead, use the terms _____ and

Concentration

- · Concentration units can vary greatly.
- They express a ratio that compares an amount of the solute with an amount of the solution or the solvent.
- For chemistry applications, the concentration term ______ is generally the most useful.

- Molarity = moles of solute/liter of solution
- Note that the volume is the total solution volume that results, not the volume of solvent alone.

Molarity Examples

 Calculate the molarity of a solution made by dissolving 23.4 g of sodium sulfate in 125 ml of solution

Molarity Examples

 Calculate the molarity of a solution made by dissolving 5.00 g of C₆H₁₂O₆ in enough water to make 100.0 ml of solution

Molarity Examples

 How many grams of Na₂SO₄ are required to make 0.350 L of a 0.500 M solution of Na₂SO₄?

Making Solutions

- Assuming you're making an aqueous solution, you need to know only three things when working quantitatively:
 - 1. the concentration
 - 2. the amount of solute
 - 3. the total volume of solution needed.

Preparing 1 L of an NaCl Solution

 How would you prepare 1.0 L of a 0.15M sodium chloride solution?

Dilution

- When chemists purchase solutions, they generally purchase "_____" which are extremely concentrated solutions
- This way a chemist can dilute the strong solution to any concentration that they wish. This stops the chemist from having to buy several concentrations

Dilution Equation

- $M_1V_1 = M_2V_2$
- M₁ = initial molarity
- V₁ = initial volume
- M₂ = final molarity
- V₂ = final volume
- The units for V₁ & V₂ do not matter as long as they are the same
- M₁ & M₂ MUST be in molarity

Dilution Problems

• Suppose we want to make 250 ml of a 0.10 M solution of CuSO4 and we have a stock solution of 1.0 M CuSO4. How would we prepare the solution?

More Dilution Problems

• How many ml of 3.0 M H₂SO₄ are required to make 450 ml of a 1.0 M solution?

More Dilution Problems

• How would you make it?