
Entropy

1st Law of Thermodynamics

- Energy is neither _____ nor
 - The energy of the universe is constant
 - Energy just changes from one form to another

Spontaneity

- _____ process a process that occurs without intervention
 - Spontaneous processes can be fast or slow
- Spontaneity tells us the _____ of the energy flow
 - It tells us NOTHING about the speed of the reaction

For example..

- A ball spontaneously rolls down a hill
 - It does not spontaneously roll up
- If iron is exposed to air, it spontaneously rusts
 - The rust does not spontaneously turn back into air & iron

Entropy

- _____ (s) the measure of molecular randomness or disorder
 - Think of entropy as the amount of chaos
- The driving force for a spontaneous process is an increase in entropy

Entropy

 The natural progression of things is from order to disorder

Entropy

- Predict which has the highest entropy
- 1. CO_2 (s) or CO_2 (g)
- 2. 1 mol of N_2 at 1 atm or 1 mol of N_2 at 0.001 atm

Entropy

- Predict the sign of the entropy change for the following...
- 1. Sugar is added to water to form a solution
- 2. lodine vapor condenses on a cold surface to produce a liquid

2nd Law of Thermodynamics

- 2nd Law of Thermodynamics In any spontaneous process there is always an increase in of the universe
- Energy is conserved...entropy is NOT conserved!
- The entropy of the universe is always increasing

 - AS _{univ} = + = spontaneous (would be spontaneous in the opposite direction)

Temperature & Spontaneity

$$\Delta S_{surr} = \underline{\Delta H}$$

T must be in Kelvin ΔH is usually given in KJ/mol Δ S will be in KJ/K, but is usually changed to J/K

Example

 Sb_2S_3 (s) + 3Fe (s) \rightarrow 2Sb (s) + 3FeS (s) $\Delta H = -125 \text{ kJ}$

Calculate ΔS_{surr} for this reaction at 25°C and 1 atm

Example

 Sb_4O_6 (s) + 6C (s) \rightarrow 4Sb (s) + 6CO (g) $\Delta H = 778 \text{ kJ}$

Calculate ΔS_{surr} for this reaction at 25°C and 1 atm

3rd Law of Thermodynamics

• The entropy of a perfect crystal at 0K is

Free Energy

- (G) a thermodynamic function equal to the enthalpy minus the product of the entropy and the Kelvin temperature
- $\Delta G = \Delta H T\Delta S$
- A process is only spontaneous in the direction where ΔG is $\underline{\text{negative}}$

Example

- At what temperatures is the following process spontaneous at 1 atm?

 - $Br_2(I) \rightarrow Br_2(g)$ $\Delta H = 31.0 \text{ KJ/mol} \rightarrow 31000 \text{ J/mol}$
 - ∆S = 93.0 J/ K mol

Dependence of H & S on Spontaneity

 $\Delta G = \Delta H - T \Delta S$

ΔН	ΔS	Result
-	+	Spontaneous at all temperatures
+	+	Spontaneous at high temperatures
-	-	Spontaneous at low temperatures
+	-	Not spontaneous at any temperature