


- Intra Molecular Bonding ____
 - metal + non metal
 - I ______ non metal + non metal
 - metal + metal

Intermolecular

- Intermolecular bonds Bonding _
 - Network Covalent bonding
 - Ionic bonding
 - Metallic bonding
 - Hydrogen bonding
 - Dipole Dipole bondingLondon Dispersion forces

Network Covalent

- Continuous network of covalent bonds
- Examples: quarts, diamond, graphite, SiO₂
- Extremely _____ melting points
- Generally _____ in all solvents
- _____ conductors of electricity

Ionic

- Strong bonds due to _____ forces
- _____ melting points
- Good conductors of electricity when
 _____ or in _____
- Usually soluble in _____ or ____ solvents

Metallic

- _____ of valence electrons
- _____ melting points
- · Electrons free to move around
- _____ conductor of electricity

Hydrogen bonding

- Occurs when H is bonded to _____, ____, or
- They are VERY strong leading to
 - High boiling points
- Viscous

 In order for a substance to be polar, the bonds within the molecule must carry different charges and cannot cancel out due to symmetry

Polar or non polar

- CHF₃
- CO₂
- BCI_3
- CH₄
- H₂O

Rule for solubility

- dissolves ____
- Polar will dissolve in polar
- Non polar will dissolve in non polar

Van der Waals Forces

- Dipole Dipole
 - Dipole partial _____ & a partial _____
 charges at one end
 - The partial positive and partial negative will
 - These attractions are called dipole dipole attractions
 - These come from polar molecules ONLY!!!

London Dispersion forces

- Small electrostatic forces caused by the ______ of the electron in molecules
- In all molecules
- More electrons → stronger LDF because more polarizable

What type of intermolecular forces are present?

- Ar
- HCI
- HF
- CaCl₂
- CH₄
- CO
- NaNO₃

Which will have the ...

- Highest boiling point... HBr, Kr, Cl₂
- Highest freezing point...H₂O, NaCl, HF
- Lowest freezing point...N₂, CO, CO₂
- Lowest boiling point...CH₄, CH₃CH₃, CH₃CH₂CH₃
- Highest boiling point...HF, HCI, HBr

More examples

- At 25°C ONF is a gas where H₂O is a liquid. Why?
- At 25°C Br_2 is a liquid when Cl_2 is a liquid. Why?