Lewis Structures & VSEPR

Lewis Structure

- <u>Lewis Structures</u> shows how the ______ are arranged among the atoms of a molecule
- There are rules for Lewis Structures that are based on the formation of a
- Atoms want to achieve a _____ configuration

Octet & Duet Rules

- <u>Octet Rule</u> atoms want to have valence electrons
- <u>Duet Rule</u> H is the exception. It wants to be like He & is stable with only ______valence electrons

Steps for drawing Lewis Structures

- Sketch a simple structure with a central atom and all attached atoms
- Add up all of the valence electrons for each individual atom
- If you are drawing a Lewis structure for a negative ion add that many electrons to create the charge
- If you are drawing a Lewis structure for a positive ion subtract that many electrons to create the charge

Steps for drawing Lewis Structures

- Subtract 2 electrons for each bond drawn
- Complete the octet on the central atom & subtract those electrons
- Complete the octet on the surrounding atoms & subtract those electrons
- Get your final number
- If $0 \rightarrow$ you are done!
- If + \rightarrow add that many electrons to the central atom
- If \rightarrow need to form multiple bonds to take away that many electrons

Bond Types

- bonds (σ) single covalent
- _____ bonds (Π) occur when multiple bonds are formed
- · Single bond sigma
- Double bond 1 sigma & 1 pi
- Triple bond 1 sigma & 2 pi

Bond length & Strength

- As the number of bonds increases, the bond length _____
- The shorter the bond, the _____ the bond

CCl₄

• HF

• NH₃

Exceptions to the octet rule

- Sometimes the central atom violates the octet rule and has more or less than 8 valence electrons
- Keep using the same rules to draw Lewis Structures

• SF₄

• ICl₃

- When more than one Lewis Structure can be written for a particular molecule
- _____ all possible Lewis structures that could be formed
- The actual structure is the ______ of all of the structures
- You MUST show all structures!

• SO₃

• NO2-

• NO₃-

Formal Charge

- Formal charges can be used in 1 of 2 ways...
 - 1. Suggest where the _____ are
 - 2. Help select the most _____ structure from a set of resonance structures

Example

- Calculate the formal charge on each element in the carbonate ion
- CO₃²⁻

2 - Help select the most plausible structure from a set of resonance structures

- When choosing the most likely resonance structure
- 1. Most likely All formal charges are _____
- 2. Next likely All formal charges add up to _____
- 3. Next likely Formal charges are closest to _____
- 4. Next likely _____ charge is on most electronegative atom

Example

• Which of the following resonance structures is most likely for CH₂O and why?

H $c=\tilde{o}, \quad or \quad H-\tilde{c}=\tilde{o}-H$

Another Example

• Which is the most likely structure for N₂O?

(N=N=0) \leftrightarrow :N=N-01 \leftrightarrow :N=-N=0:

VSEPR Theory

- VSEPR Theory
- The structure around a given atom is determined by minimizing the
- The electrons and elements bonded to the central atom want to be ______as possible

VSEPR Steps

- 1. Draw the Lewis structure for the molecule
- 2. Count the total number of things that are around the central atom to determine the electron pair geometry
- 3. Imagine that the lone pairs of electrons are invisible and describe the molecular shape

3 Electron Pairs

• If there are 3 electron pairs the shape will be trigonal planar

• Bond angle = 120°

• Bond angle = 109.5°

• Trigonal Pyramidal

4 electron pairs

• What if there are 2 lone pairs (invisible)? What would it look like then?

• bent

• Bond angles = 90° & 120°

• What is there is 1 lone pair (invisible)

Seesaw

6 electron pairs

 If there are 6 electron pairs the shape will be octahedral

• Bond angle = 90°

• Square planar

- squar
- Square pyramidal