Quantum Mechanical Model

Quantum Numbers (n, l, m_i, m_s)

- n = _____ Quantum Number
- It has whole number values (1, 2, 3, ...)
- An n increases, the orbital becomes larger
- n tells you what _____ you are in
- n designates the ______

Quantum Numbers (n, l, m _i , m _s)				
• L =	Quantum Number			
 Also known as t Number 	he Quantum			
 Can have value n 	s from 0 to (n-1) for each value of			
 Defines the 	of the orbital			
• L = 0 → s				
• L=1 → p				
• L = 2 → d				
• L = 3 → f				

Tells you what _____ you are in

Quantum Numbers (n, l, m _l , m _s)	>
• m _L = Quantum Number	
 Can have whole number values from L to + L (including zero) 	-
 This describes the orbital's in space (which axis it is on) 	
Tells you what you are i	n

Quantum Numbers	
(n, l, m _l , m _s)	\supset

- m_s = magnetic _____ quantum number
- Spin quantum number denotes the direction of spin of an electron within a magnetic field.
- Possibilities for m_s +1/2 or -1/2

Possible Values for n, l, m_i, m_s

- n (shell) = 1, 2, 3, 4, ... (whole numbers)
- L (sub shell) values from $0 \rightarrow (n 1)$
- m_L (orbital) values from L to + L (including zero)
- m_s = +1/2 or -1/2

Examples

• What are the possible values for L if n =2?

Examples

• What are the possible values of n, L, and m in the 2s sub shell?

Examples

• What are the possible values for n, L, & m in the 3d sub shell?

• What is the designation for the sub shell where n = 2 and L = 1?

Example

• What is the designation for the sub shell where n = 4 and L = 3?

Possible Number of Values (how many answers are there?)

- A shell with Principal Quantum Number (n) has exactly n number of sub shells
- # L's = n

- If n = 2 how many possible number of values are there for L?
- What would those values be?

• For a given value of L there are 2L + 1 possible values for m

Example

• How many values of m are there if L = 0?

	Evampla	1
		7/
-		

• How many possible values are there for m if L = 2?

• What are the values for m if L = 2?

Possible Number of Values (how many answers are there?)

- The number of possible values of $m = n^2$
- Example:
- If n = 2, how many values are there for m?

Possible Number of Values (how many answers are there?)

- Since each orbital can hold at most 2 electrons, the number of electrons in a shell is 2n²
- How many electrons are in the n = 3 shell?

Summary		
Possible Values	# of Possible Values	
L (0 → n-1)	 Orbitals (m) 	
■ m (-L → +L)	• #m = 2L +1	
· · · · · · · · · · · · · · · · · · ·	• #m = n ²	
	 Sub shells (L) 	
	• #L=n	
	 Electrons 	
	• # electrons = 2n ²	

• How many sub shells are in n = 4?

More examples

 What designation would n = 5 and L = 1 have?

More examples

• In the 4d sub shell, what are the possible values for n, l, & m?

More examples

• In the 3p sub shell, what are the possible values for n, l, & m?