Chemical Reactions #1

Equations

- equations show the complete chemical formulas. Does not indicate ionic character
- equation shows all ions.
 Actually how the particles exist in the solution

Steps for Writing Ionic Equations

- 1. Write the balanced molecular equation (balanced chemical equation)
- 2. Break every thing down into its ions

 EXCEPT the
 ______, or ______
 (complete ionic equation)
- 3. Cross out everything that is the same on both sides (_______ions)
- 4. Write what is left (net ionic equation)

Rules

- When writing ionic equations, you must keep together the solid, gas, water, or weak electrolyte
- Spectator ions ions that appear on both sides of the equation. They have very little to do with the chemical reaction

A few more things that you must know...

- When writing ionic reactions...you must be able to identify the solid, gas or weak electrolyte
- In order to know what is solid...you MUST memorize the solubility rules
- You must also be able to identify strong electrolytes...
- They are all strong acids & bases
 - Strong acids...HCl, HBr, HI, HClO₃, HClO₄, HNO₃, HlO₄, H₂SO₄
 Strong bases...all group 1A & 2A hydroxides

Solubility Rules

SOLUBILITY RULES

Always soluble: alkali metal ions (Li[†], Na[†], K[†], Rb[†], Cs[†]), NH₄[†], NO₃⁺, ClO₃⁺, ClO₄⁺, C₂H₃O₂⁻ Generally soluble: (mnemonics)
Cf. Br. T. Soluble except Ag., Pb. Hg., AP(H)
F- Soluble except Ca., Sr., Ba., Pb., Mg., (CBS.PM)
SO42- Soluble except Ca., Sr., Ba., Pb., CBS.PM)
$$\label{eq:Generally insoluble: optimizer} \begin{split} & \text{Generally insoluble:} \\ & \text{O}^{2^{-}}, \text{OH}^{-} & \text{Insoluble exceptand alkali metals, and NH4}^{+} \\ & \text{Ca$}^{2^{-}}, \text{Sr$}^{2^{-}}, \text{Ba$}^{2^{+}} (\text{CBS}) \text{ somewhat soluble} \\ & \text{CO}_{3}^{2^{-}}, \text{PQ4}^{3^{-}}, \text{S}^{2^{-}}, \text{SO}_{3}^{2^{-}}, \text{C}_{2}\text{Q4}^{2^{-}}, \text{CrQ4}^{2^{-}} \end{split}$$
Insoluble except alkali metals and NH4+

Classification of Reactions

- There are 5 major classifications of reactions:
 - (Combination)

 - (Metathesis)

Synthesis # 1

- 1. Metal oxide + nonmetal oxide → salt (Not Redox)
- Sulfur dioxide gas is passed over solid calcium oxide

Synthesis # 2

- 2. Metal oxide + water → base (Not Redox)
- · Solid sodium oxide is added to water

Synthesis #3

- 3. Non metal oxide + water \rightarrow acid
- Sulfur dioxide gas is placed in water

Synthesis # 4

- 4. Metal + nonmetal → salt (Redox...<u>NO</u> IONS)
- A salt is just an ionic compound (a positive charge & a negative charge)
- Magnesium metal is combusted in nitrogen gas

Synthesis #5

- 5. Metal chloride + $O_2 \rightarrow$ Metal chlorate
- Magnesium chloride reacts with oxygen gas

More Decomposition

- $(NH_4)_2CO_3 \rightarrow 2NH_3 + H_2O + CO_2$
- $2H_2O_2 \rightarrow 2H_2O + O_2$
- If you get any of these products...they decompose...
 - NH₄OH → NH₃ + H₂O

 - $H_2CO_3 \rightarrow CO_2 + H_2O$ $H_2SO_3 \rightarrow SO_2 + H_2O$ $HNO_2 \rightarrow NO + NO_2 + H_2O$

Single Replacement

- Element + Compound → Element + Compound
- A + BX → AX + B
- · Can have metal & metal replacement, halogen & halogen replacement, or metal & hydrogen replacement

Single Replacement

- · Need to know your activity series!
- · Just look at your Standard Reduction Potential Table

Single Replacement

· Magnesium turnings are added to a solution of ferric chloride

Single Replacement

- · Sodium is added to water
- Whenever water is added to an element visualize it as HOH (make sure you re write it as H₂O)

Single Replacement

Chlorine gas is bubbled into a solution of potassium fluoride

Double Replacement

- Double Replacement a reaction involving the exchange of ions between 2 compounds
- Of the form: AX + BY → BX + AY

Double Replacement

- In order for a double replacement reaction to take place, one of 3 things must be formed:
- Precipitate (solid)
- Gas
- Weak electrolyte

Solubility Rules!!!

SOLUBILITY RULES

Always soluble:
alkali metal I ons (L1*, Na*, K*, Rb*, Cs*), NH4*,
NO3*, ClO3*, ClO4*, C2H3O2*

Generally soluble: (mnemonics)
CT, Br*, IT Soluble except Ag*, Pb²*, Hg2²* (AP/H)
F* Soluble except Ca²*, Sr²*, Ba²*, Pb²*, Mg²*
(CBS-PM)
SO4²* Soluble except Ca²*, Sr²*, Ba²*, Pb²*, CBS/PBS)

Generally insoluble:
O²*, Off Insoluble except and alkali metals, and NH4*
Ca²*, Sr²*, Ba²*, CBS) somewhat soluble
CO3*, PO4*, Sr2*, SO3*, C704*, Cr04²*
Insoluble except alkali metals and NH4*

Double Replacement # 1 (Precipitate)

- 1. Precipitate (must know solubility rules)...the precipitate will stay together
- A saturated solution of barium hydroxide is mixed with a solution of iron (III) sulfate

Double Replacement # 2 (Formation of a gas)

- Formation of a gas (acid + sulfide, sulfite, carbonate, or bicarbonate...or ammonium salt + a strong base → NH₃(g), H₂O, and a salt)
- Hydrobromic acid is added to a solution of potassium bicarbonate

Double Replacement # 3

- Metal hydride + water → H₂ + strong base (IONS)
- · Sodium hydride is placed into water

Double Replacement #4 (Acid Base neutralization)

- Acid + base → salt + water
- Hydrogen sulfide gas is bubbled through excess potassium hydroxide solution

Combustion

- 1. Hydrocarbon + $O_2 \rightarrow CO_2 + H_2O$ (No ions)
- · Combustion of methane
- Combustion of 2-ethyl 3 methylhexane