

Redox Reactions

- Most redox reactions are simple
 - Synthesis (metal + non metal)
 - Single Replacement
 - Combustion
- Some are more complex
- We will call these non simple redox

MEMORIZE!				
Oxidizing Agent	Turns into	Reducing Agent	Turns into	
helles -	Mn +2	Free metals	Metal Cations	
(in acid)				
MnO ₄ - (in neutral or base)	MnO ₂	Halide ions	Free Halogens	
MnO ₂ (in acid)	Mn +2	Free halogens (in dilute basic)	Hypohalite ions	
Cr ₂ O ₇ ²⁻ (in acid)	Cr +3	Free halogens (in conc. basic)	Halite ions	
HNO ₃ (Concentrated)	NO ₂	NO ₂ ·	NO ₃ -	
HNO ₃ (dilute)	NO	S ₂ O ₃ -2	S406 -2	
H ₂ SO ₄ (hot & conc)	SO ₂	SO ₃ ⁻² or SO ₂	SO4 -2	
Highly charged metal cations	Lower charged metal cations	Lower charged metal cations	Highly charged metal cations	
Free Halogens	Halide ions	H ₂	H+	
H ₂ O ₂ (in acid)	H ₂ O	H ₂ O ₂ (in basic)	H ₂ O + O ₂	

Redox Reaction Types

- Watchout for:
- Keywords "acidified solution" or an acid included in the reactants.
- Anytime you see a <u>neutral element</u>, Cu°, O₂, H₂, etc. it <u>must</u> be redox.
- When you recognize great $\underline{oxidizers}$ like $Cr_2O_7{}^2{}^{\text{-}},\ MnO_4{}^{\text{-}},$ and MnO_2

Reaction Example 1

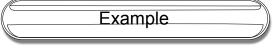
Solid copper reacts with *dilute* nitric acid solution

Reaction Example 2

 A solution of potassium permanganate is mixed with an *alkaline solution* of sodium sulfite

Reaction Example 3

 Hydrogen peroxide is added to a solution of iron (II) sulfate


Naming Complex lons

 Although the names of complex ions can look crazy, the formula are simply knowing the patterns, much like naming hydrocarbons

Naming Ligands				
	H ₂ O	aqua		
	NH ₃	ammine		
	OH -	hydroxo		
	CI -	chloro		
	F -	fluoro		
	CN -	cyano		
	CO	carbonyl		
	NO ₂ -	nitrito		
	NO	nitrosyl		

Prefixes for Ligands

2	di
3	tri
4	tetra
5	penta
6	hexa

- Name [Cu(H₂O)₆] ²⁺
- hexaaquacopper(II)
- The (II) is the charge of the copper NOT the charge on the complex ion!

- Example
- Name [Al(H₂O)₆] ³⁺
- hexaaquaaluminium

Negative Complex lons

- A negatively charged complex ion is called an *anionic complex*.
- In this case the name of the metal is modified to show that it has ended up in a negative ion.
- This is shown by the ending -ate.

Negative Names

cobalt	cobaltate
aluminum	aluminate
chromium	chromate
vanadium	vanadate
copper	cuprate
Iron	ferrate
silver	argenate

- [CuCl₄] ²⁻
- tetrachlorocuprate(II)

- Example
- [AI(H₂O)₂(OH)₄] -
- diaquatetrahydroxoaluminate

Name these compounds

- [Fe(H₂O)₆]Cl₂
- hexaquoiron (II) chloride
- [Cr(H2O)3(OH)3]
- triaquotrihydroxochromium (III)
- K₂[CoCl₄]
- potassium tetrachlorocobaltate (II)

Colors		
Formula	Color	
[Cr(H ₂ O) ₈] ²⁺	Blue	
[Cr(H ₂ O) ₈] ³⁺	Blue/Violet	
$[Mn(H_2O)_8]^{2+}$	Very pale pink	
[Fe(H ₂ O) ₈] ²⁺	Pale green	
[Fe(H ₂ O) ₆] ³⁺	Yellow/brown	
[Co(H ₂ O) _e] ²⁺	Pink	
[Ni(H ₂ O) ₈] ²⁺	Green	
[Cu(H ₂ O) ₆] ²⁺	Blue	

Reactions

• Be on the lookout for the words concentrated, NH₃ with transition metals, and aluminum

Complexation Reactions

- a solution of Nickel (II) ions reacts with excess or *concentrated* ammonia
- Ni ²⁺ + 4NH₃ → [Ni(NH₃)₄] ²⁺
- Use twice the number of ligands as the charge

Another Reaction

- tetraamminecopper (II) sulfate is added to hydrochloric acid.
- $[Cu(NH_3)_4]^{2+}$ + H⁺ \rightarrow NH₄⁺ + Cu²⁺
- Balance
- $[Cu(NH_3)_4]^{2+} + 4H^+ \rightarrow 4NH_4^+ + Cu^{2+}$

On the test last year!!!

- Aqueous sodium hydroxide is added to a saturated solution of aluminum hydroxide, forming a complex ion
- AI(OH)₃ + 3 OH⁻ → [AI(OH)₆] ³⁻