
Atomic Structure, Periodic Table, & Lewis Structures

Dalton's Atomic Theory

1.	All matter is composed of extremely small particles called
2.	All atoms of a given element are, having the same size, mass, and chemical properties. Atoms of a specific element are from other elements
3.	Atoms cannot be,, or
4.	Different atoms combine in simple whole number to form compounds
5.	In a, atoms are separated, combined,

JJ Thomson

- JJ used the _____ experiment to determine the _____ to ___ ratio of an electron.
- He identified the first subatomic particle, the
- He proposed the _____ model of the atom
- Credited Thomson for discovering the

Robert Millikan

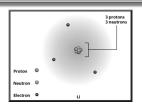
- · Millikan is noted for his famous Millikan's
- This experiment determined the and the of an electron

Earnest Rutherford

- Rutherford's _____ Experiment helped to determine the existence of the _____
 Rutherford proposed that the nucleus was _____ and ___ and ____ charged
- Proposed the ____ model which stated that there was a nucleus with a positive charge and electrons around the outside

James Chadwick

- Chadwick showed that the nucleus also contained
- He is credited for the discovery of the


Basic Definitions

 _____ – smallest unit of an element that retains the properties of that element

Protons, Neutrons, & Electrons

- Protons
 - chard
- found in the ____
- Neutrons
 - found in the
- Electrons
 - _____charge
 - found on the _____ of the nucleus
- <u>Nucleus</u>
 - made up of _____ and _____
 - overall _____ charge

Atomic Structure

TABLE 2.1 Comparison of the Proton, Neutron, and Electron				
Particle	Charge	Mass (arrus)		
Proton	Positive (1+)	1.0073		
Neutron	None (neutral)	1.0087		
Electron	Negative (1-)	5.486×10^{-4}		

Atomic Numbers

- (Z) number of _____ in the nucleus of an atom of that element.
- The number of protons determines the _____ of an element
- The number of protons for an element _____ be changed.

Atomic Numbers

- Atoms have no overall electrical charge so the number of _____ must equal the number of
- The number of electrons can be changed when determining the charge of an ______.

Masses

- The sum of the protons and neutrons in the nucleus is the ______(A) of that particular atom.
- Isotopes of an element have different mass numbers because they have different numbers of _____

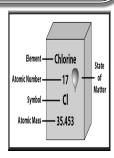
Isotopes

- When writing isotopes, the atomic number (or number of protons) will appear at the
 The mass number (number of protons plus neutrons will
- appear at the
- The element symbol will appear to the
 The different number of neutrons has NO bearing on chemical reactivity

atomic number

Writing the Names of Isotopes

- Write the name of the element the mass number
- For example \$^{12}_6\$ C would be named:


Try the following

Name	Symbol	# Protons	# Neutrons	# Electrons	Mass #
Carbon – 11					
	197 Au 79				
		1	2		
				25	55
Oxygen - 15					

Try this one

Name	Symbol	# Protons	# Neutrons	# Electrons	Mass #
lodine -1 - 130					

Atomic Mass

Calculating Atomic Mass

 Copper exists as a mixture of two isotopes. The lighter isotope (Cu-63), with 29 protons and 34 neutrons, makes up 69.17% of copper atoms. The heavier isotope (Cu-65), with 29 protons and 36 neutrons, constitutes the remaining 30.83% of copper atoms. Calculate the atomic mass of Copper.

Calculating Atomic Mass

Try this one..

Calculate the atomic mass of germanium.

Isotope	Abundance (%)	Atomic Mass (amu)
Geranium-70	21.23	69.924
Geranium-72	27.66	71.922
Geranium-73	7.73	72.923
Geranium-74	35.94	73.921
Geranium-76	7.44	75.921

You can tell many things from an isotope formula

- Hydrogen has three naturally occurring isotopes in nature: Hydrogen – 1, Hydrogen – 2, and Hydrogen – 3.
 - Which is the most abundant in nature?
 - Which is the heaviest?

Periodic Table

- ____ arrangement of elements in order of increasing atomic number with elements having similar properties in vertical columns
 - ______ vertical columns
 - _____ horizontal rows

Group Names

Group	Name
1A	
2A	
3A	
4A	
5A	
6A	
7A	
8A	

Groups

- The group tells you the number of
- Valence electrons electrons in the shell of the atom

Characteristics

- Elements in the same group exhibit similar chemical characteristics due to the fact that they all have the same number of
- The most stable number of valence electrons is _____
- This is called an _____

Physical States and Classes of the Elements

- The majority of the elements are
 _____. They occupy the entire left side and center of the periodic table.
- _____ occupy the upper-right-hand corner.
- ____ are located along the boundary between metals and nonmetals.

Metals

- are elements that have luster, conduct heat and electricity, and usually bend without breaking.
- All metals except _____ are solids at room temperature

Transition Metals

- The elements in Groups B of the periodic table are called the
- All transition elements are _____.
- Many transition metals can have more than one charge

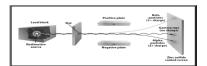
Non Metals

- Most ______ don't conduct electricity, are much poorer conductors of heat than metals, and are brittle when solid.
- Many are gases at room temperature; those that are solids lack the luster of metals.

Metalloids

 have some chemical and physical properties of metals and other properties of nonmetals.

Nuclear vs. Chemical


- Occurs when bonds are broken and formed
- Atoms remain unchanged, but the may be rearranged
- Involve only valence electrons
- Have small energy changes
- Reaction rates are influenced by temperature, pressure, concentration, and catalysts
- Occurs when nuclei emit particles and/or rays
- Atoms of one element are converted into another element
- May involve protons, neutrons, or electrons
- Have large energy changes
- Reaction rates are not affected

Types of Radiation

 The three most common types of radiation are alpha (α), beta (β), and gamma (γ).

Deflection

 The effect of an electric field on three types of radiation is shown.

Nuclear Reactions

- Write the reaction for radium 226 converting into radon-222
- Write the reaction of carbon-14 decaying into nitrogen – 14
- Write the reaction of uranim-238 undergoing alpha and gamma decay

Fission and Fusion

- _____ splitting the nucleus into fragments
 - Releases large amounts of energy
 - Nuclear power plants use fission to generate power
- ______ combining of atomic nuclei
 - Release large amounts of energy
 - Require extremely high temperatures
 - The lowest temperature possible is 40,000,000 K
 - Know to occur on the sun